Prediction for several narrow *N** and Λ* resonances with hidden charm around 4 GeV

Jiajun Wu R. Molina E. Oset B. S. Zou

Outline

- Introduction
- Theory for the new bound states
- Width and Coupling constant of these states
- The prediction for PANDA

Summary

Introduction

 The Chiral Unitary Approach has been a very fruitful scheme to study the nature of many hadron resonances. The poles showed by the analysis of meson baryon scattering amplitudes are identified with existing baryon resonances.

 In the many resonances, such as N*(1535), Λ*(1405), it suggests that there are large strange quark components.

Introduction

 The Chiral Unitary Approach has been a very fruitful scheme to study the nature of many hadron resonances. The poles showed by the analysis of meson baryon scattering amplitudes are identified with existing baryon resonances.

 In the many resonances, such as N*(1535), Λ*(1405), it suggests that there are large strange quark components.

Put the Charm quarks in the resonances.

Theory for the Potential V

$$\begin{split} L_{VVV} &= ig \left\langle V^{\mu} \left[V^{\nu}, \partial_{\mu} V_{\nu} \right] \right\rangle \\ L_{PPV} &= -ig \left\langle V^{\mu} \left[P, \partial_{\nu} P \right] \right\rangle \\ L_{BBV} &= g \left\langle \overline{B} \gamma_{\mu} \left[V^{\mu}, B \right] \right\rangle \\ &+ g \left\langle \overline{B} \gamma_{\mu} B \right\rangle \left\langle V^{\mu} \right\rangle \end{split}$$

SU(4)

SU(3)

 $\begin{cases} P_{1} P_{2}: \pi, K, \eta, \eta' & \overline{D}, D^{-}, D_{s}^{-} \\ V_{1} V_{2}: \rho, K^{*}, \omega, \phi & \overline{D}^{*}, D^{*-}, D_{s}^{*-} \\ B_{1} B_{2}: n, p, \Sigma, \Xi & & \Lambda_{c}, \Sigma_{c}, \Xi_{c}, \Xi_{c}, \Omega_{c} \\ V^{*}: \rho, K^{*}, \omega, \phi & \rho, K^{*}, \omega, \phi \\ E. \text{ Oset and A. Ramos Eur.} \\ Phys. J. A 44 445(2010) \end{cases}$

Theory for the Potential V

From the Lagrangians, we can get the potential:

$$V_{ab(P_1B_1 \to P_2B_2)} = \frac{C_{ab}}{4f^2} (E_{P_1} + E_{P_1})$$

$$V_{ab(V_1B_1 \to V_2B_2)} = \frac{C_{ab}}{4f^2} (E_{V_1} + E_{V_2})$$

Here f=93MeV is the pion decay constant.

C_{ab} are calculated by the SU(4) Clebsch Gordan Coefficients. E. M. Haacke, J. W. Moffat and P. Savaria J. Math. Phys. 17, 2041 (1976).

Theory for the G function

$$G_{(m,B)} = i2M_B \int \frac{1}{(P - p_m)^2 - M_B^2 + i\varepsilon} \frac{1}{p_m^2 - M_m^2 + i\varepsilon} \frac{d^4 p_m}{(2\pi)^4}$$

$$G1_{(m,B)} = \int_{0}^{\infty} \frac{p^{2} dp}{4\pi^{2}} \frac{2M_{B}(w_{m} + w_{B})}{w_{m}w_{B}(P^{2} - (w_{m} + w_{B})^{2} + i\varepsilon)}$$
Free Parameter,
Around the mass of $\rho(770)$.
$$G2_{(m,B)} = \frac{2M_{B}}{16\pi^{2}} \left(a_{\mu} + \ln\frac{M_{B}^{2}}{\mu^{2}}\right) \frac{M_{m}^{2} - M_{B}^{2} + s}{2s} \ln\frac{M_{m}^{2}}{M_{B}^{2}} + \mu=1$$
GeV and let a_{μ} is Free Parameter
$$\frac{q}{\sqrt{s}} \left[\ln[s - (M_{m}^{2} - M_{B}^{2}) + 2q\sqrt{s}] + \ln[s + (M_{m}^{2} - M_{B}^{2}) + 2q\sqrt{s}] - \ln[-s - (M_{m}^{2} - M_{B}^{2}) + 2q\sqrt{s}] - \ln[-s + (M_{m}^{2} - M_{B}^{2}) + 2q\sqrt{s}]]\right]$$

In $\left[-s - (M_{m}^{2} - M_{B}^{2}) + 2q\sqrt{s}] - \ln[-s + (M_{m}^{2} - M_{B}^{2}) + 2q\sqrt{s}]\right]$

Theory for the G function

$$G_{(m,B)} = i2M_B \int \frac{1}{(P - p_m)^2 - M_B^2 + i\varepsilon} \frac{1}{p_m^2 - M_m^2 + i\varepsilon} \frac{d^4 p_m}{(2\pi)^4}$$

Theory for the T matrix

- We get the potential V and the G function.
- The unitary T amplitudes can be obtained by solving the coupled channels Bethe-Salpeter equation:

$$T = \left[1 - VG\right]^{-1}V$$

From the *T*, we can find some poles by using different G functions and parameters.

The Pole position

I, S	$\alpha = -2.2 (\Lambda = 0.7)$	$\alpha = -2.3 (\Lambda = 0.8)$	$\alpha = -2.4 (\Lambda = 0.9)$	-					
	Pole Position	Pole Position	Pole Position						
1/2, 0	4291(4273)	4269(4236)	4240(4187)	$\bar{D}\Sigma_c$					
0, -1	4247(4120)	4213(4023)	4170(3903)	$\bar{D}_s \Lambda_c^+ \bar{D} \Xi_c$					
	4422(4394)	4403(4357)	4376(4308)	$\bar{D}\Xi_c'$					
TABLE I: Pole position from $PB \rightarrow PB$ with the two G functions. The unit is MeV									
I, S	$\alpha = -2.2 (\Lambda = 0.7)$	$\alpha = -2.3 (\Lambda = 0.8)$	$\alpha = -2.4 (\Lambda = 0.9)$						
	Pole Position	Pole Position	Pole Position						
1/2, 0	4438(4410)	4418(4372)	4391(4320)	$\bar{D}^*\Sigma_c$					
0, -1	4399(4256)	4370(4155)	4330(4030)	$\bar{D}_s^* \Lambda_c^+ \bar{D}^* \Xi_c$					
	4568(4532)	4550(4493)	4526(4441)	$\bar{D}^* \Xi_c'$					

TABLE II: Pole position from $VB \rightarrow VB$ with the two G functions. The unit is MeV

There are 6 bound states.Jiajun WuMENU2010 William Mary College

The coupling constants

	I, S	Pole	Coup	Coupling Const	
		Position	mlo	f Channels	rУ
$\boldsymbol{\rho}$ $\boldsymbol{\rho}$	1/2, 0	ELL	$\bar{D}\Sigma_c$	$\bar{D}\Lambda_c^+$	
$\frac{\delta_a \delta_b}{\Gamma}$		4269	2.85	0	
$\sqrt{s-z_R}$	0, -1		$\bar{D}_s \Lambda_c^+$	$\bar{D}\Xi_c$	$\bar{D}\Xi_c'$
$T_{aa}(\sqrt{s}-z_{R})$		4213	1.37	3.25	0
		4403	0	0	2.64
$T_a T_{ab}$	1/2, 0		$\bar{D}^*\Sigma_c$	$\bar{D}^* \Lambda_c^+$	
T_{aa}		4418	2.75	0	
	0, -1		$\bar{D}_s^* \Lambda_c^+$	$\bar{D}^*\Xi_c$	$\bar{D}^* \Xi_c'$
		4370	1.23	3.14	0
		4550	0	0	2.53

MENU2010 William Mary College

 $T_{ab} = \lim_{\sqrt{s} \to z_R} \left|g_{a}\right|^{2} = \lim_{\sqrt{s} \to z_{R}}$ $g_b = \lim_{\sqrt{s \to z_R}} \frac{g}{z_R}$

Jiajun Wu

The width of New bound states

These bound states can decay by two types:

1. Decay to the light meson and baryon channels without charm quark.

Such as πN , ηN , $\eta' N$, KN

2. Decay to the cc meson and baryon channels with charm quark.

Such as $J/\psi N$, $\eta_c N$,

Light Meson and Baryon channel

Pi ·	$\pi K \eta \eta'$. ▼ · · P ₂	I, S	Pole	real	axis		Ţ	Width of		
	`₹-★-₹	-		Position	Mass	Width		Dec	ay Chann	ıel	
D^*/D^*_s	3 3	D^*/D^*_s	1/2, 0				πN	ηN	$\eta' N$	$K\Sigma$	
_	$\frac{2}{2}$			4269	4267	34.3	3.8	8.1	3.9	17.0	
/	ΝΣΛΞ		0, -1	1 1 1	mi	n	Ē	$\pi\Sigma$	$\eta\Lambda$	$\eta'\Lambda$	$K\Xi$
B ₁	(a)	D^{B_2}	е.	4213	4213	26.4	15.8	2.9	3.2	1.7	2.4
Vin	$\rho_K * \omega \phi$	n^{N_2}		4403	4402	28.2	0	10.6	7.1	3.3	5.8
- 6	zmz	10	1/2, 0				ρN	ωN	$K^*\Sigma$		
D^*/D_s^*	ξş	D^*/D^*_s		4418	4416	28.4	3.2	10.4	13.7		
	$\frac{2}{2}$		0, -1				\bar{K}^*N	$\rho\Sigma$	$\omega\Lambda$	$\phi\Lambda$	$K^* \Xi$
/	ΝΣΛΞ			4370	4371	23.3	13.9	3.1	0.3	4.0	1.8
B_1^{r}	(b)	`B ₂		4550	4549	23.7	0	8.8	9.1	0	5.0

The widths are all very narrow.Jiajun WuMENU2010 William Mary College

cc Meson and Baryon channel

- The potentials of VB⇔PB are very small. When they exchange pseudoscalar meson, the BBP vertex is very small; when they exchange vector meson, the VVP vertex is very small.
- 2. The bound states from the PB channels only can decay to the $\eta_c B$, and the bound states from the VB channels only can decay to the J/ ψ B.

$$\Gamma_{N_{c\bar{c}}^* \to J/\psi N} = 0.01 MeV$$

I, S	real axis in Width of						
	Mass	Width	Decay Channel				
1/2, 0	4261	56.9	$\eta_c N$ 23.4				
0, -1			$\eta_c \Lambda$				
	4209	32.4	5.8				
	4394	43.3	16.3				
1/2, 0	4412	47.3	$J/\psi N$ 19.2				
		11.0	10.2				
0, -1			$J/\psi\Lambda$				
	4368	28.0	5.4				
	4544	36.6	13.8				

The prediction for PANDA The p beam of 15 GeV one has the invariant mass of C.M. about 5470 MeV, which allows one to observe resonances in pX production up to a mass M= 4538 MeV.

The prediction for PANDA

The prediction for PANDA

 $pp \rightarrow J/\psi \ pp$ 0.002 – 0.037µb But the J/ ψ is much easier to be detected by lepton channels than $\eta_{c.}$

Summary(1)

- We find 6 bound states by using the Chiral Unitary Approach. All of these bound states have hidden charm quarks.
- These states can decay to two types of channels:
 1 light meson and baryon channels: about
 1MeV—14MeV because of cc annihilation.
 2 cc meson and baryon channels: about 20MeV
 - because of small phase space.
- These heavy states have narrow width.

Summary(2)

- The suggestion for PANDA
- These new states could be looked for in the reaction $pp \rightarrow \eta_c pp$ and $pp \rightarrow J/\psi pp$.
- $pp \rightarrow \eta_c pp$ 0.13 1.3 μb
- $pp \rightarrow J/\psi pp$ 0.002 0.037µb
- It can provide almost 110000 and 1700 events per day in PANDA by L=10³¹ cm⁻²s⁻¹.

Thank you!

Wu MENU2010 William Mary College

Jiajun Wu