Prediction for several narrow N* and Λ^{*} resonances with hidden charm around 4 GeV

Jiajun Wu

R. Molina E. Oset B. S. Zou

Outline

- Introduction
- Theory for the new bound states
- Width and Coupling constant of these states
- The prediction for PANDA
- Summary

Introduction

- The Chiral Unitary Approach has been a very fruitful scheme to study the nature of many hadron resonances. The poles showed by the analysis of meson baryon scattering amplitudes are identified with existing baryon resonances.
- In the many resonances, such as N^{*} (1535), Λ^{*} (1405), it suggests that there are large strange quark components.

Introduction

- The Chiral Unitary Approach has been a very fruitful scheme to study the nature of many hadron resonances. The poles showed by the analysis of meson baryon scattering amplitudes are identified with existing baryon resonances.

- In the many resonances, such as N^{*} (1535), Λ^{*} (1405), it suggests that there are large strange quark components.

Put the Charm quarks in the resonances.
Jiajun Wu MENU2010 William Mary College

Theory for the Potential V

$$
\begin{aligned}
& L_{\mathrm{VVV}}=i g\left\langle V^{\mu}\left[V^{\nu}, \partial_{\mu} V_{v}\right]\right\rangle \\
& L_{P P V}=-i g\left\langle V^{\mu}\left[P, \partial_{v} P\right]\right\rangle \\
& L_{B B V}=g\left\langle\bar{B} \gamma_{\mu}\left[V^{\mu}, B\right]\right\rangle
\end{aligned}
$$

$$
+g\left\langle\bar{B} \gamma_{\mu} B\right\rangle\left\langle V^{\mu}\right\rangle
$$

$\bar{D}, D^{-}, D_{s}^{-}$
$\mathrm{V}_{1} \mathrm{~V}_{2}: \rho, \mathrm{K}^{*}, \omega, \phi$
$\bar{D}^{*}, D^{*-}, D_{s}^{*-}$
$\mathrm{B}_{1} \mathrm{~B}_{2}: \mathrm{n}, \mathrm{p}, \Sigma, \Xi \Rightarrow \Lambda_{c}, \Sigma_{c}, \Xi_{c}, \Xi_{c}^{\prime}, \Omega_{c}$
$\mathrm{V}^{*}: \rho, \mathrm{K}^{*}, \omega, \phi$
E. Onset and A. Ramos Eur.

Phys. J. A 44 445(2010)
Jiajun Wu MENU2010 William Mary College

Theory for the Potential V

From the Lagrangians, we can get the potential:

$$
\begin{aligned}
& V_{a b\left(P_{1} B_{1} \rightarrow P_{2} B_{2}\right)}=\frac{C_{a b}}{4 f^{2}}\left(E_{P_{1}}+E_{P_{1}}\right) \\
& V_{a b\left(V_{1} B_{1} \rightarrow V_{2} B_{2}\right)}=\frac{C_{a b}}{4 f^{2}}\left(E_{V_{1}}+E_{V_{2}}\right)
\end{aligned}
$$

Here $\mathrm{f}=93 \mathrm{MeV}$ is the pion decay constant.
C_{ab} are calculated by the $\operatorname{SU}(4)$ Clebsch Gordan Coefficients.
E. M. Haacke, J. W. Moffat and P. Savaria
J. Math. Phys. 17, 2041 (1976).

Theory for the G function

$$
\begin{aligned}
& \frac{q}{\sqrt{s}}\left[\ln \left[s-\left(M_{m}^{2}-M_{B}^{2}\right)+2 q \sqrt{s}\right]+\ln \left[s+\left(M_{m}^{2}-M_{B}^{2}\right)+2 q \sqrt{s}\right]-\right. \\
& \left.\left.\ln \left[-s-\left(M_{m}^{2}-M_{B}^{2}\right)+2 q \sqrt{s}\right]-\ln \left[-s+\left(M_{m}^{2}-M_{B}^{2}\right)+2 q \sqrt{s}\right]\right]\right\}
\end{aligned}
$$

Jiajun Wu MENU2010 William Mary College

$$
\begin{aligned}
& G_{m B)}=i 2 M_{B} \int \frac{1}{\left(P-p_{m}\right)^{2}-M_{B}^{2}+i \varepsilon} \frac{1}{p_{m}^{2}-M_{m}^{2}+i \varepsilon} \frac{d^{4} p_{m}}{(2 \pi)^{4}} \\
& G 1_{(m, B)}=\int_{0}^{-1} \frac{p^{2} d p}{4 \pi^{2}} \frac{2 M_{B}\left(w_{m}+w_{B}\right)}{w_{m} w_{B}\left(P^{2}-\left(w_{m}+w_{B}\right)^{2}+i \varepsilon\right)} \\
& \text { Free Parameter, } \\
& \text { Around the mass } \\
& \text { of } \rho(770) \text {. } \\
& \mu=1 \mathrm{GeV} \text { and let } \mathrm{a}_{\mu} \\
& \text { is Free Parameter }
\end{aligned}
$$

Theory for the G function

Jiajun Wu MENU2010 William Mary College

Theory for the T matrix

- We get the potential V and the G function.
- The unitary T amplitudes can be obtained by solving the coupled channels Bethe-Salpeter equation:

$$
T=[1-V G]^{-1} V
$$

From the T, we can find some poles by using different G functions and parameters.

The Pole position

I, S $\quad \alpha=-2.2(\Lambda=0.7) \quad \alpha=-2.3(\Lambda=0.8) \quad \alpha=-2.4(\Lambda=0.9)$
Pole Position
Pole Position
Pole Position

$1 / 2,0$	$4291(4273)$	$4269(4236)$	$4240(4187)$	$\bar{D} \Sigma_{c}$
$0,-1$	$4247(4120)$	$4213(4023)$	$4170(3903)$	
	$\bar{D}_{s} \Lambda_{c}^{+}$	$\bar{D} \Xi_{c}$		
	$4422(4394)$	$4403(4357)$	$4376(4308)$	$\bar{D} \Xi_{c}^{\prime}$

TABLE I: Pole position from $P B \rightarrow P B$ with the two G functions. The unit is MeV

I, S	$\alpha=-2.2(\Lambda=0.7)$	$\alpha=-2.3(\Lambda=0.8)$		$\alpha=-2.4(\Lambda=0.9)$		
	Pole Position	Pole Position	Pole Position			
$1 / 2,0$	$4438(4410)$	$4418(4372)$	$4391(4320)$	$\bar{D}^{*} \Sigma_{c}$		
$0,-1$	$4399(4256)$	$4370(4155)$	$4330(4030)$	$\bar{D}_{s}^{*} \Lambda_{c}^{+} \quad \bar{D}^{*} \Xi_{c}$		
	$4568(4532)$	$4550(4493)$	$4526(4441)$	$\bar{D}^{*} \Xi_{c}^{\prime}$		

TABLE II: Pole position from $V B \rightarrow V B$ with the two G functions. The unit is MeV

There are 6 bound states.

Jiajun Wu MENU2010 William Mary College

The coupling constants

	I, S	Pole Position	Coupling Constant of Channels		
$\Gamma_{a b}=\lim _{\Gamma} \frac{g_{a} g_{b}}{\Gamma}$	$1 / 2,0$	4269	$\begin{aligned} & \bar{D} \Sigma_{c} \\ & 2.85 \end{aligned}$	$\bar{D} A_{c}^{+}$ 0	
$\sqrt{s} \rightarrow Z_{R} \sqrt{S}-Z_{R}$	0, -1		$\bar{D}_{s} \Lambda_{c}^{+}$	$\bar{D} \Xi_{c}$	$\bar{D} \Xi_{c}^{\prime}$
$\left\|g_{a}\right\|^{2}=\lim _{\sqrt{s} \rightarrow z_{R}} T_{a a}\left(\sqrt{S}-z_{R}\right)$		4213 4403	1.37 0	3.25 0	0 2.64
$g_{b}=\lim _{\sqrt{s} \rightarrow z_{R}} \frac{g_{a} T_{a b}}{T}$	$1 / 2,0$	4418	$\begin{gathered} \bar{D}^{*} \Sigma_{c} \\ 2.75 \end{gathered}$	$\bar{D}^{*} \Lambda_{c}^{+}$ 0	
	0, -1		$\bar{D}_{s}^{*} \Lambda_{c}^{+}$	$\bar{D}^{*} \Xi_{c}$	$\bar{D}^{*} \Xi_{c}^{\prime}$
		4370	1.23	3.14	0
		4550	0	0	2.53

Jiajun Wu MENU2010 William Mary College

The width of New bound states

These bound states can decay by two types:

1. Decay to the light meson and baryon channels without charm quark.

Such as $\pi \mathrm{N}, \eta \mathrm{N}, \eta^{\prime} \mathrm{N}, \mathrm{KN}$
2. Decay to the $\bar{c} c$ meson and baryon channels with charm quark.

Such as $\mathrm{J} / \psi \mathrm{N}, \eta_{\mathrm{c}} \mathrm{N}$,

Light Meson and Baryon channel

The widths are all very narrow.
Jiajun Wu MENU2010 William Mary College

cc Meson and Baryon channel

1. The potentials of $\mathrm{VB} \leftrightarrow \mathrm{PB}$ are very small. When they exchange pseudoscalar meson, the BBP vertex is very small; when they exchange vector meson, the VVP vertex is very small.
2. The bound states from the PB channels only can decay to the $\eta_{\mathrm{c}} \mathrm{B}$, and the bound states from the VB channels only can decay to the $\mathrm{J} / \psi \mathrm{B}$.

Jiajun Wu
MENU2010 William Mary College

The prediction for PANDA

The $\overline{\mathrm{p}}$ beam of 15 GeV one has the invariant mass of C.M. about 5470 MeV , which allows one to observe resonances in pX production up to a mass $M=4538 \mathrm{MeV}$.

Jiajun Wu
MENU2010 William Mary College

The prediction for PANDA

(a)
(b)

(c)

$$
\begin{aligned}
& F=\frac{\Lambda_{x}^{2}-M_{x}^{2}}{\Lambda_{x}^{2}-p_{\pi}^{2}} \\
& F=\frac{\Lambda_{N^{*}}^{4}}{\Lambda_{N^{+}}^{4}\left(p_{N_{v}^{2}}^{4}-M_{N^{*}}^{2}\right)} \\
& \mathrm{pp} \rightarrow \eta \mathrm{pp} \\
& 0.13-1.3 \mu \mathrm{~b}
\end{aligned}
$$

Jiajun Wu MENU2010 William Mary College

The prediction for PANDA

$\overline{\mathrm{p} p} \rightarrow \mathrm{~J} / \psi \overline{\mathrm{p} p} \quad 0.002-0.037 \mu \mathrm{~b}$
But the J / ψ is much easier to be detected by lepton channels than η_{c}.

Jiajun Wu MENU2010 William Mary College

Summary(1)

- We find 6 bound states by using the Chiral Unitary Approach. All of these bound states have hidden charm quarks.
- These states can decay to two types of channels:

1 light meson and baryon channels: about $1 \mathrm{MeV}-14 \mathrm{MeV}$ because of cc annihilation.
2 cc meson and baryon channels: about 20 MeV because of small phase space.
These heavy states have narrow width.

Summary(2)

- The suggestion for PANDA
- These new states could be looked for in the reaction $\overline{\mathrm{pp}} \rightarrow \eta_{\mathrm{c}} \overline{\mathrm{pp}}$ and $\overline{\mathrm{pp}} \rightarrow \mathrm{J} / \psi \overline{\mathrm{pp}}$.
- $\overline{\mathrm{p}} \mathrm{p} \rightarrow \eta_{\mathrm{c}} \overline{\mathrm{p}} \mathrm{p} \quad 0.13-1.3 \mu \mathrm{~b}$
- $\mathrm{pp} \rightarrow \mathrm{J} / \Psi \mathrm{pp} \quad 0.002$ - $0.037 \mu \mathrm{~b}$
- It can provide almost 110000 and 1700 events per day in PANDA by $\mathrm{L}=10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

Thank you!

MENU2010 William Mary College

